Tools, resources, genotyping and phenotyping

Clare Lister and Simon Griffiths
20/04/2017

WGIN3 Projects: Griffiths' Lab

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm

1. Dissecting UK drought tolerance in Paragon x Garcia

- Analysis of senescence from 2015-2016 trial outstanding
- Simon Orford had taken UAV images at regular intervals
- Chris Applegate from Ji Zhou's group (EI) analysed the images
- Modified an existing metric for 'Excess Green minus Excess Red (ExG - ExR)' from Mayer and Neto (2008)*
- Generated quantitative data from the UAV images of all the plots from 18 time points (28/04 to 05/08)
- Used data to QTL map traits involved in colour change - assumed to be due to senescence
*"Verification of color vegetation indices for automated crop imaging applications" Computers and Electronics in Agriculture, Volume 63, Issue 2, October 2008, Pages 282-293

1. Dissecting UK drought tolerance in Paragon x Garcia

- Segmentation of plots
- Colour assignment of plots

1．Dissecting UK drought tolerance in Paragon x Garcia

－Example with plots from 15 time points

1. Dissecting UK drought tolerance in Paragon x Garcia

Position of QTLs

	NOT IRRIGATED	IRRIGATED
$\mathbf{1 0 / 0 6 / 2 0 1 6}$	1 A 1	
$\mathbf{2 2 / 0 6 / 2 0 1 6}$	$1 \mathrm{~A} 1,2 \mathrm{~A} 2$	$1 \mathrm{~A} 1,2 \mathrm{~A} 2$
$\mathbf{0 1 / 0 7 / 2 0 1 6}$	$1 \mathrm{~A} 1,2 \mathrm{~A} 2,2 \mathrm{~B}$	$1 \mathrm{~A} 1,2 \mathrm{~A} 2,6 \mathrm{~A}$
$\mathbf{0 7 / 0 7 / 2 0 1 6}$	$2 \mathrm{~A} 2,2 \mathrm{~B}$	2 B
$\mathbf{1 3 / 0 7 / 2 0 1 6}$	2 B	$2 \mathrm{~B}, 5 \mathrm{~B} 2$
$\mathbf{1 9 / 0 7 / 2 0 1 6}$	$2 \mathrm{D}, 5 \mathrm{~B} 2,6 \mathrm{~A}, 7 \mathrm{~A} 1$	$2 \mathrm{D}, 5 \mathrm{~B} 2,7 \mathrm{~A} 1$
$\mathbf{2 2 / 0 7 / 2 0 1 6}$	2 D	
$\mathbf{2 6 / 0 7 / 2 0 1 6}$	$2 \mathrm{~A} 1,2 \mathrm{~B}, 3 \mathrm{~B}, 5 \mathrm{~B} 2$	
$\mathbf{0 2 / 0 8 / 2 0 1 6}$		$1 B, 2 A 1,2 B, 5 \mathrm{D} 2$
$\mathbf{0 5 / 0 8 / 2 0 1 6}$		$5 D 2$

- Data from last 10 time points
- Shows delayed senescence response in the irrigated plots

1. Dissecting UK drought tolerance in Paragon x Garcia

Test profile: \%2016_07_26_NI

X

X

Test profile: \%2016_08_02_।

- Results suggest plot-colour scoring method very effective
- No gene candidates proposed as yet...

1. Dissecting UK drought tolerance in Paragon x Garcia

- Drought Trial repeated 2016-2017
- Riverside Field, Church Farm, Bawburgh - field with lighter, sandier soil and gentler slope
- Monitoring soil water content with Delta-T probes
- Will monitor regularly with UAV (and Rothamsted drone!)
- Possibility of spring sowing? X

1. Dissecting UK drought tolerance in Paragon x Garcia

- Wheat yields in UK often limited by water deficit during early stages of development around stage 31 and the start of elongation
- Stage 31 is usually reached during April when rainfall can be especially low.

Wheat
Genetic
Improvement
Network

1. Dissecting UK drought tolerance in Paragon x Garcia

1. Dissecting UK drought tolerance in Paragon x Garcia

- Scored one rep of the trial for Stage 31
- Sectioning and examination of 3-5 stems to give consensus
- Used data for QTL mapping

1. Dissecting UK drought tolerance in Paragon x Garcia

Test profile: Stage_31

Chromosomes
QTL effects:
additive (blue=Parent 1 ; yellow-red=Parent 2)

Locus	\%Expl.	Add.	High value	s.e.
name	Var.	eff.	allele	
BSO0090234_2B	12.140	1.343	Garcia	0.265
BS00054733_5A	12.258	1.349	Paragon	0.264

1. Dissecting UK drought tolerance in Paragon x Garcia

QTL at BS00054733-5A likely to be PhyC QTL at BS00090234-2B is not likely to be PpdB1

1. Dissecting UK drought tolerance in Paragon x Garcia

1. Dissecting UK drought tolerance in Paragon x Garcia

Soil water matric potential

- Soil matric potential is the negative pressure (or suction) required to extract water from between the matrix of soil particles
- It is an important indication of plant water stress.
- Measured in kilopascal (kPa)
- Using EQ3 probe from Delta-T
- At potential of -33 kPa (-10 kPa for sand), soil is at field capacity
- Field capacity is viewed as the optimal condition for plant growth and microbial activity.
- Maximum value should be 0 but probe less accurate in this range
- Soil matric potential accurate to:
$0 \pm 10 \mathrm{kPa}$ from 0 to -100 kPa

1. Dissecting UK drought tolerance in Paragon x Garcia

KDSmart Field Scoring App

- Part of the "KDDart Knowledge Discovery System" from Diversity Array Technology
- Used at and recommended by CIMMYT

```
* KD Smart
```


KDSmart is an application designed to operate on a variety of Android handheld devices for the collection of data in the field. Containing data selectively exported from KDDart, KDSmart captures and stores Trial data in the field for subsequent uploading to KDDart.

As needs dictate KDSmart can operate in 'standalone' mode without the KDDart infrastructure. This utilises trials defined in CSV files for import and export. So even without KDDart, KDSmart is still a useful tool to capture field data.

The illustration on the right shows the scoring window where most activity occurs. The user can select the traits to display for scoring at any time, along with a range of options to suit the user or task at hand.

- Download free from Google Playstore onto an Android device
- There are several demo trials to practice with.

KDSmart Field Scoring App

Home page
Settings, Trials, Traits..

Configuring to Score

Portrait Screen Light Background

KDSmart Field Scoring App

Landscape Screen

Tap date required
\$ Network

Input file

Trial Name	Trial Planting Date	* Plot Id	** Plot Column (X)	** Plot Row (Y)	Rep	Entry_No	Genotype	Note	Stage_31	Booting	Date_flowering	Height_cm	Lodging	Senescence	Yield_kg	TGWT	Specific_weight
PxG_DT_2017	24/10/2016	10	1	10	3	114	RIL251										
PxG_DT_2017	24/10/2016	11	1	11	3	52	RIL120										
PxG_DT_2017	24/10/2016	12	1	12	3	16	RIL32										
PxG_DT_2017	24/10/2016	13	1	13	3	60	RIL147										
PxG_DT_2017	24/10/2016	14	1	14	3	35	RIL75										
PxG_DT_2017	24/10/2016	15	1	15	3	176	RIL355										
PxG_DT_2017	24/10/2016	16	1	16	3	82	RIL185										
PxG_DT_2017	24/10/2016	17	1	17	3	94	RIL216										
PxG_DT_2017	24/10/2016	18	2	1	1	94	RIL216										

Output file

TrialName	PlantingDate	Plotld	PlotColumn	PlotRow	Entry_No	Genotype	Rep	Booting	Date_flowering	Height_cm	Lodging	Senescence	Specific_weight	Stage_31	Date:Stage_31	TGWT	Yield_kg
PxG_DT_2017	24/10/2016	10	1	10	114	RIL251	3							03/04/2017	12/04/2017 10:00		
PxG_DT_2017	24/10/2016	11	1	11	52	RIL120	3							07/04/2017	12/04/2017 10:00		
PxG_DT_2017	24/10/2016	12	1	12	16	RIL32	3							07/04/2017	12/04/2017 09:59		
PxG_DT_2017	24/10/2016	13	1	13	60	RIL147	3							03/04/2017	12/04/2017 09:58		
PxG_DT_2017	24/10/2016	14	1	14	35	RIL75	3							03/04/2017	12/04/2017 09:57		
PxG_DT_2017	24/10/2016	15	1	15	176	RIL355	3							07/04/2017	12/04/2017 09:56		
PxG_DT_2017	24/10/2016	16	1	16	82	RIL185	3										
PxG_DT_2017	24/10/2016	17	1	17	94	RIL216	3							10/04/2017	12/04/2017 10:09		

WGIN3 Projects: Avalon and Cadenza

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm

- The BC3 NILs carry selected genetic foreground in the QTL regions (height, heading, and yield)
- In addition each line carries $\sim 12.5 \%$ random chromosomal background.
- Plan to tile the whole genome with chromosome segments to make recombinant substitution lines for genome.

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- Publication and availability of genomic sequence will allow more sophisticated presentation of these data in future
- Possible to present these in an interactive format
- Include as part of a searchable genome browser.
- Indication extent of substituted segment.
- Show position of Axiom \uparrow and Bristol \uparrow markers

 (CSSL) for Avalon x Cadenza
- Genotyping carried out on 94 NILs (+ Av/Cad) using Breeders 35K array
- Estimate of \% coverage of background (+ foreground) for each chromosome
- Have used several methods to generate map (i.e. based on frame-map, Axiom info and pseudomolecules...)
- NILs backcrossed to the recurrent parent to generate lines where QTL region and random segments have been separated

	Avalon	Cadenza
	43 lines	46 lines
1A	$\sim 80 \%$	$\sim 60 \%$
1B	$\sim 95 \%$	$\sim 90 \%$
1D	$\sim 30 \%$	$\sim 70 \%$
2A	$\sim 80 \%$	$\sim 95 \%$
2B	$\sim 60 \%$	$\sim 90 \%$
2D	$\sim 95 \%$	$\sim 70 \%$
3A	$\sim 95 \%$	$\sim 95 \%$
3B	$\sim 70 \%$	$\sim 95 \%$
3D	$\sim 80 \%$	$\sim 60 \%$
4A	$\sim 80 \%$	$\sim 75 \%$
4B	$\sim 80 \%$	$\sim 85 \%$
4D	$\sim 80 \%$	$\sim 95 \%$
5A	$\sim 90 \%$	$\sim 75 \%$
5B	$\sim 80 \%$	$\sim 90 \%$
5D	$\sim 95 \%$	$\sim 80 \%$
6A	$\sim 95 \%$	$\sim 85 \%$
6B	$\sim 95 \%$	$\sim 95 \%$
6D	$\sim 95 \%$	$\sim 95 \%$
7A	$\sim 60 \%$	$\sim 70 \%$
7A or 7D	$\sim 40 \%$	$\sim 90 \%$
7B	$\sim 60 \%$	$\sim 90 \%$
7D	$\sim 95 \%$	$\sim 30 \%$
INCLUDES FOREGROUND		

	Cadenza
	Avalon QTL foreground
	Avalon randon background
	Heterozygous
	Unable to assign

- ‘Graphical genotypes’ of an Avalon NIL for 1B ear emergence (left) and a Cadenza NIL for 2D height (right).
- For each chromosome a representative genotype is shown for each $\mathbf{2 0} \mathbf{~ M b}$ region across the length of the chromosome, based on the WGAv0.4 sequence assembly of Chinese Spring.

- 'Graphical genotypes’ of Chr1A from all the 44 and 47 NILs from with Avalon or Cadenza backgrounds, respectively.
- A representative genotype is shown for each 20 Mb region across the length of the chromosome, based on the NRGene sequence.

- 'Graphical genotypes’ of Chr1B
- The first five NILs in each background were selected for the 1B heading QTL
- Two NILs in the Avalon background appear to be incorrectly selected.
- Will produce ‘Graphical Genotypes’ for all 21 chromosomes
- Will select lines to give the optimal tiling path for each chromosome
- The F2 progeny of crosses to the recurrent parent of the selected lines will be genotyped with BS markers to determine the presence of the required segment
- Seed of these lines will be bulked and made available to the community

Rothamsted Research

Using the WGIN Diversity trial to develop drone applications

Andrew Riche

Disease detection from drone images

- Unsprayed area of wheat
- Collecting images at different altitudes
- At low altitude rotor wash affects the plants

2017 Diversity trial

| 2017 | |
| :--- | :--- | :--- |
| Avalon | |
| Cadenza | |
| Claire | |
| Cocoon | |
| Conqueror | |
| Cordiale | |
| Crusoe | |
| Evolution | |
| Gallant | |
| Graham | Stigg |
| Hereford | |
| Hereward | |
| Hylux | |
| Hystar | |
| Istabraq | |
| KWS Lili | |
| Leeds | |
| Malacca | |
| Maris Widgeon | |
| Mercia | |
| Paragon | |
| RAGT Illustrious | |
| Reflection | |
| Riband | |
| Robigus | |
| Siskin | Evoke |
| Skyfall | |
| Soissons | |
| Solstice | |
| Xir | |

Diversity trial yields and grain nitrogen

ROTHAMSTED RESEARCH

$-0.0044 x+10.039$
$\mathrm{R}^{2}=0.2579$
x+11.515
$-0.0067 x+15.343$
$\mathrm{R}^{2}=0.36$
$R^{2}=0.2472$

N use efficiency

Grain NUE All N treatments

NUpE = kg taken up per 100 kg available (soil + fertilizer)

NUtE $=\mathrm{kg}$ of grain per kg N taken up

NUE = kg of grain per kg N available
i.e. @ 200 kg N, 2 kg per decade, 10kg more grain per kg of N

Nitrogen requirements for maximum yield

Gp 1: Max yield

$3.5 \mathrm{t} / \mathrm{ha}$ yield increase over 50 yrs

$50 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ increase in N rate for max yield over 50 yrs

2015-2016 Diversity trial anthesis sampling

2015-2016 Diversity trial mineral analysis

Key elements:

- Nitrogen
- Calcium
- Magnesium
- Sulfur
- Zinc
- Potassium
- Phosphorus
- Iron

Also:

- Al, As, Cd, Co, Cr, Cu, Mn, Mo, Na, $\mathrm{Ni}, \mathrm{Pb}, \mathrm{Se}, \mathrm{Ti}$

2015-2016 Diversity trial mineral analysis

2017 Diversity trial - Iron uptake and concentration

Fe concentration in biomass at anthesis v final

Acknowledgements

Malcolm Hawkesford
Adam Michalski
March Castle
David Steele

Farm staff:

Stephen Goward

Chris Mackay
Nick Chichester-Miles

Rothamsted Research

WGIN3 Management Meeting 20 ${ }^{\text {th }}$ April 2017

Screening germplasm for resilience to aphids (WP2.3)

Lesley Smart

Screening germplasm for resilience to aphids (WP2.3)

Information to establish the likely genetic basis of resistance to cereal aphids

- Crosses of T. monococcum lines made by Mike HammondKosack: MDR037 (susceptible) x MDR045, MDR049 and MDR657 (all showing evidence of partial resistance)
- F1, F2 and F3 generations of these crosses have now been tested in the phenotyping screen against both aphid species. F3s of each cross tested included plants with the best and the worst effective partial resistance to the aphid species.
- Tested plants now being taken to F4.

Screening germplasm for resilience to aphids (WP2.3)
 Response to F2 generation of T. monococcum crosses

Sitobion avenae on T. monococcum crosses F2s
Number nymphs/weight range at 7 days (mg)
Partial resistance (reduced
90
weight gain) showing in F2 generation of MDR037 x MDR049, particularly for S. avenae the grain aphid.
Department
for Environment
Food \& Rural Affairs
<0.1 0.1-0.150.15-0.20.2-0.250.25-0.30.3-0.350.35-0.40.4-0.450.45-0.50.5-0.550.55-0.6
Plant no. $37 \times 657=118 ; 37 \times 49=113 ; 37 \times 45=89 ;$ Solstice $=49$ RESEARCH

Screening germplasm for resilience to aphids (WP2.3)

Response to F 3 generations of T. monococcum crosses

15 seeds (where available) of each selected F3 line sown and seedlings tested against target aphid species in phenotyping screen, compared to Solstice standard.
Number of surviving nymphs recorded and then weighed in their batches to get an average nymph weight. Weights then allocated to weight ranges for comparison.

- BBSRC

ROTHAMSTED

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of T. monococcum MDR037 x MDR049 crossing events

R. padi on T. monococcum crosses of MDR37 $\times 49$ at F3 number of nymphs per weight range at 6 days (mg)

Plant no. x4 33, x5 57, x11 93, x17 83 \& Solstice 59
R. padi is selected from a narrower weight range or has more plasticity in response?
S. avenae is a better biological indicator in the phenotyping screen?

Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR049 crossing events
S. avenae on T. monococcum crosses of MDR37 x 49 at F3 number nymphs per weight range at 7 days (mg)

Plant no. x4 89, x5 79, x11 33, x17 36 \& Solstice 60

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of T. monococcum MDR037 x MDR049 crossing events

R. padi on T. monococcum crosses of MDR37 x 49 on F3s from F2 plants with the best partial resistance; number nymphs per weight range at 6 days (mg)
 6 5 4 3 20

R. padi on T. monococcum crosses of MDR37 x 49 on F3s from F2 plants with the worst partial resistance; number nymphs per weight range at 6 days (mg)

S. avenae on T. monococcum crosses of MDR37 x 49 on F3s from F2 plants with the worst partial resistance; number nymphs per weight range at 7 days (mg)

Department
 Wheât
 Genetic

號 for Environment
Food \& Rural Affairs
Improvement
Network

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of T. monococcum MDR037 x MDR045 crossing events

R. padi on T. monococcum crosses of MDR37 x 45 at F3 number of nymphs per weight range at 6 days (mg)

Response to different crossing events is similar

S. avenae on T. monococcum crosses of MDR37 x 45 at F3 number nymphs per weight range at 7 days (mg)
Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR045 crossing events
plant no. x14 57, x19 51, x20 50, Solstice 39

Wheat

Genetic
Improvement
Network

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of T. monococcum MDR037 x MDR657 crossing events

R. padi on T. monococcum crosses of MDR37 x 657 at F3 number of nymphs per weight range at 6 days (mg)

Response to different crossing events is similar except for x12(2)
S. avenae on T. monococcum crosses of MDR37 x 657 at F3 number nymphs per weight range at 7 days (mg)
Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR657 crossing events
plant no. x1 15, x2 45, x10 40, x12 53, Solstice 40 RESEARCH

Summary WGIN3 (WP2.3)

- F3 generations of T. monococcum MDR037 x MDR049, MDR045 and MDR657 crosses, with a range of aphid response at F2 and sufficient seed, have been tested in the phenotyping screen against both aphid species.
- All surviving plants have been vernalised and are being taken to F4
- Plants will be selected from the most viable crossing events for each of the crosses for each aphid, tested and taken to F5.
- DNA samples from F2s still to be tested

Rothamsted Research where knowledge grows

WGIN 3
 Resistance to take-all and foliar diseases

Vanessa McMillan

Resistance to multiple foliar diseases

Watkins 2008 Field Trial

10 Watkins accessions with a high degree of resistance to all 4 foliar pathogens
Also a high take-all disease year with root infection early in the season
Was the foliar disease resistance an induced plant response?

				2008 Disease assessments			
	Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
	18	Spring	India	0	0	T	T
	137	Spring	Australia	T	T	0	T
	203	Winter	India	0	0	0	T
	231	Spring	Hungary	0	0	T	0
	262	Spring	Canary Islands	0	0	0	0
	399	Spring	China	T	0	T	0
	495	Spring	Morocco	0	0	T	0
	610	Spring	Yugoslavia	0	0	T	T
	733	Spring	Iran	T	T	T	T
4	786	Spring	USSR	0	T	T	0
Department for Environment				$0 \text { - no disease , } \mathrm{T}=\text { trace }$			

WGIN 3 Watkins foliar disease experiments

- 10 Watkins lines + controls sown in both $1^{\text {st }}$ wheat (no take-all) and $3^{\text {rd }}$ wheat (high take-all) field trials in autumn 2014, 2015 and 2016
- No fungicides applied to allow natural disease to develop
- Score for foliar diseases + take-all

Watkins foliar disease field trial 2015

Yellow rust dominant disease that developed across 2015 field trials
Wheat
Genetic
Improvement
Network

Evidence of resistance to yellow rust

- Did Watkins lines escape disease in 2008 or change in YR races?
- Evidence of induced response due to take-all? Dis
for Environment
Food \& Rural Affairs

Evidence of resistance to yellow rust

Watkins 203
Low levels of yellow rust sporulation

Watkins 733
No sporulation

Watkins foliar disease trial 2016

- Repeat field trial with 5 replicates of each genotype sown in autumn 2015 in Long Hoos 5 ($1^{\text {st }}$ wheat) and Long Hoos 6/7 (3 ${ }^{\text {rd }}$ wheat)
- Yellow rust, septoria and brown rust developed
for Environment
Food \& Rural Affairs

6 ${ }^{\text {th }}$ June 2016 - Yellow rust and Septoria

- Yellow Rust shows similar pattern to 2015

Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections

- All genotypes at GS 57-61, except 610 at GS 47

意事
Department
for Environment
Food \& Rural Affairs

22 ${ }^{\text {nd }}$ June 2016 - Brown rust developed across the $1^{\text {st }}$ wheat trial site

Watkins 786

Watkins 231

- Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust - do not possess multi disease resistance

Watkins foliar disease trial 2017

- Repeat field trial with 3-5 replicates of each genotype sown in autumn 2016 in Long Hoos 4 (1 $1^{\text {st }}$ wheat) and Claycroft (3 ${ }^{\text {rd }}$ wheat)
- Disease assessments carried out $18^{\text {th }}$ April 2017

$18^{\text {th }}$ April 2017 - Septoria and Yellow Rust

Accession

Accession

- Disease assessments on lower leaves
- All genotypes at tillering or beginning of stem elongation
- Higher disease pressure on $3^{\text {rd }}$ wheat site
- Watkins 203 and 610 most promising for showing high levels of resistance against multiple foliar diseases - yellow rust, brown rust and septoria

Food \& Rural Affairs

Watkins mapping population development

Summer 2015 Field crossing with cv. Fielder

Accession Number	Growth habit	Country of Origin	Ears crossed	F 1 grains
203	Winter	India	8	31
231	Spring	Hungary	8	54
610	Spring	Yugoslavia	6	33
733	Spring	Iran	6	49
786	Spring	USSR	N/A	N/A

Summer 2016

- F_{1} grain sown in glasshouse to generate F 2 and for backcrossing to cv . Fielder
- Watkins 786 x Fielder crossing carried out in glasshouse at later date
- F_{1} grain included in a spring field trial 2016 to study inheritance
- Watkins 786 originally excluded from crossing because had high levels of yellow rust during tillering - possibly APR?

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016
for Environment
 Food \& Rural Affairs

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

$2017 \mathrm{~F}_{2}$ field trial

F_{2} field trial

- Two F_{2} populations from each of the four crosses sown (FxW203, FxW231, FxW610 and FxW733) + parents
- $10 F_{1}$ plants sown from FxW786 cross
- Plot size $=4$ rows $\times 1 \mathrm{~m}$ length, 80 seeds sown for each population
- Drilled $14^{\text {th }}$ October 2016 in Sawyers 2
- April 2017 - little foliar disease developing across trial site

Can root resistance to take-all be improved by using an ancient wheat?

- $3^{\text {rd }}$ wheat field trials 2006-2011 (WGIN 1 and 2)
- 34 T. monococcum genotypes (AA diploid genome) tested over 5 years
- Originally chosen to cover range of countries of origin, subspecies, growth habit

Take-all phenotyping strategy

N

* MDRO31 and MDR046

Phenotyping strategy worked well - we have covered a range of genetically dissimilar genotypes from within larger collection

Food \& Rural Affairs

Triticum monococcum mapping population development

F6 mapping populations:

MDR037 (S) x MDR046 (R) - 79 lines (take-all resistance, 3 field seasons 2014-2016)

MDR031 (R) x MDR043 (S) (take-all resistance - currently being phenotyped, drilled in $3^{\text {rd }}$ wheat field trial autumn 2016)

MDR037 x MDR229-85 lines (root penetration, laboratory screen)

Take-all root resistance MDR037 (S) X MDR046 (R)

$3^{\text {rd }}$ wheat field trials 2014, 2015 and 2016

- Randomised block design (2-5 replicates/genotype)
- Plant samples taken at GS 75 for take-all assessments

Severe winter flooding 2013-2014

PhD student Sarah-Jane Osborne

The University of Nottingham

Take-all root resistance MDR037 (S) X MDR046 (R)

Weak but significant correlation between the two field trials

11

Take-all root resistance MDR037 (S) X MDR046 (R)

2015

79 lines, 132 markers
Take-all QTLs identified on different linkage groups between the two years

Take-all root resistance MDR037 (S) X MDR046 (R)

2015-2016

2016/R/WW/1612
$3^{\text {rd }}$ wheat
Long Hoos 6/7

Very high disease pressure Grand mean = 87 P <. 001

PhD student Sarah-Jane Osborne

Take-all root resistance MDR037 (S) X MDR046 (R)

$$
2016
$$

79 lines, 132 markers
No take-all QTLs identified
t
The University of Nottingham

Triticum monococcum take-all resistance

MDR037 (take-all susceptible) x MDR046 (take-all resistant)

- Preliminary analyses reveal different QTLs between first two field seasons perhaps exacerbated by flooding of 2013-2014 field trial
- Under very high disease pressure no QTLs detected in 2016
- SSR genotyping to be carried out to improve linkage maps

MDR031 (take-all resistant) x MDR043 (take-all susceptible)

- F_{6} take-all phenotyping trial drilled autumn 2016, population still to be genotyped

Many thanks to

Kim Hammond-Kosack
PhD students
Sarah-Jane Osborne Joseph Moughan

Undergraduate summer students
Erin Baggs
Eleanor Leane
Tessa Reid
Laurie Neal
Alex Chambers-Ostler Leanne Freeman

Gail Canning - seed preparation
Mike-Hammond-Kosack - crossing
Rodger White - statistics
RRes farm and glasshouse staff

Tm introgression into durum and hexaploid wheat

T. monococcum source genotypes

MDR 308 (DV92) - TmStb1 locus mediated resistance to Zymoseptoria tritici

MDR 031 - Seedling and adult plant root resistance to the take-all fungus

MDR 049 - Seedling and adult plant resistance to two aphid species
o Bird cherry-oat aphid R
o Grain aphid Sitobion av

Towards introgressing TmStb1 into bread wheat

Current strategy (so far not very successful) cross T. monococcum (Tm) to T. aestivum cv. Paragon ph-1 embryo rescue in F_{1} backcross the hybrid to T. aestivum cv. Paragon

Trying two alternative strategies
Strategy \#1
colchicin treat $T m$ to produce autotetraploid cross Tm autotetraploid directly to wild-type hexaploid and durum wheat

Strategy \#2
use tetraploid durum wheat as a bridging species cross Tm with durum wheat backcross this hybrid to hexaploid wheat

