

Tools, resources, genotyping and phenotyping

Clare Lister and Simon Griffiths 20/04/2017

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

- Analysis of senescence from 2015-2016 trial outstanding
- Simon Orford had taken UAV images at regular intervals
- Chris Applegate from Ji Zhou's group (EI) analysed the images
- Modified an existing metric for 'Excess Green minus Excess Red (ExG – ExR)' from Mayer and Neto (2008)*
- Generated quantitative data from the UAV images of all the plots from 18 time points (28/04 to 05/08)
- Used data to QTL map traits involved in colour change assumed to be due to senescence

*"Verification of color vegetation indices for automated crop imaging applications" <u>Computers and Electronics in Agriculture</u>, <u>Volume 63, Issue 2</u>, October 2008, Pages 282–293

- Segmentation of plots
- Colour assignment of plots

• Example with plots from 15 time points

Position of QTLs

	NOT IRRIGATED	IRRIGATED
10/06/2016	1A1	
22/06/2016	1A1, 2A2	1A1, 2A2
01/07/2016	1A1, 2A2, 2B	1A1, 2A2, 6A
07/07/2016	2A2, 2B	2B
13/07/2016	2B	2B, 5B2
19/07/2016	2D, 5B2, 6A, 7A1	2D, 5B2, 7A1
22/07/2016	2D	
26/07/2016	2A1, 2B, 3B, 5B2	
02/08/2016		1B, 2A1, 2B, 5D2
05/08/2016		5D2

• Data from last 10 time points

• S Department for Environment Food & Rural Affairs

Shows delayed senescence response in the irrigated plots

- Results suggest plot-colour scoring method very effective
- No gene candidates proposed as yet...

- Drought Trial repeated 2016-2017
- Riverside Field, Church Farm, Bawburgh field with lighter, sandier soil and gentler slope
- Monitoring soil water content with Delta-T probes
- Will monitor regularly with UAV (and Rothamsted drone!)
- Possibility of spring sowing? X

- Wheat yields in UK often limited by water deficit during early stages of development around stage 31 and the start of elongation
- Stage 31 is usually reached during April when rainfall can be especially low.

- Scored one rep of the trial for Stage 31
- Sectioning and examination of 3-5 stems to give consensus
- Used data for QTL mapping

Department for Environment Food & Rural Affairs Scoring started 27/03/17

Locus	%Expl.	Add.	High value	s.e.
name	Var.	eff.	allele	
BS00090234_2B	12.140	1.343	Garcia	0.265
BS00054733_5A	12.258	1.349	Paragon	0.264

教

:2N

QTL at BS00054733-5A likely to be PhyC QTL at BS00090234-2B is not likely to be PpdB1

ML3 probe from Delta-T at 20 cm - roots not yet reached 20 cm

Soil water matric potential

- Soil matric potential is the negative pressure (or suction) required to extract water from between the matrix of soil particles
- It is an important indication of plant water stress.
- Measured in kilopascal (kPa)
- Using EQ3 probe from Delta-T
- At potential of -33 kPa (-10 kPa for sand), soil is at field capacity
- Field capacity is viewed as the optimal condition for plant growth and microbial activity.
- Maximum value should be 0 but probe less accurate in this range
- Soil matric potential accurate to:
 - \circ ± 10 kPa from 0 to -100kPa
 - $\odot~\pm$ 10% of reading from -100kPa to 1000kPa

• Probe at 50 cm

- Part of the "KDDart Knowledge Discovery System" from Diversity Array Technology
- Used at and recommended by CIMMYT

KD Smart

KDSmart is an application designed to operate on a variety of Android handheld devices for the collection of data in the field. Containing data selectively exported from KDDart, KDSmart captures and stores Trial data in the field for subsequent uploading to KDDart.

As needs dictate KDSmart can operate in 'standalone' mode without the KDDart infrastructure. This utilises trials defined in CSV files for import and export. So even without KDDart, KDSmart is still a useful tool to capture field data.

The illustration on the right shows the scoring window where most activity occurs. The user can select the traits to display for scoring at any time, along with a range of options to suit the user or task at hand.

	11010	1			-
				-	
Long Dates	ALC: UNK				
have discovered	la:				1.7.1
100 PT 20 PT 10			_		1.000
industrials.	- 0	FR-0	In 1 1		
			- T		100
				1.1	
				F.4	- Fix
			- 1	100	12
				10	15
			- 1	-	
				-	-

- Download free from Google Playstore onto an Android device
- There are several demo trials to practice with.

www.diversityarrays.com/kddart
www.kddart.org/help/kdsmart/

Home page Settings, Trials, Traits.. Configuring to Score

Portrait Screen Light Background

Landscape Screen

ML 🧑 Y	I-2015-RDI-RG		🕑 📲 🔁 🗄					
Row/Pa	nel Touch buttor reauired	n for location	4/4 C θ_+ θ_+					
n (†	4	4	No Tags					
23	/4	/3	Anthesis					
Genotype	Name		PH_SOIL					
Genoty	ype-C		01101					
			QUAL					
			Ø 4/4#1 ℓ ℓ +					
			No Taos					

								(în: 1	37%	21:19	
	10x6							ж	20		
Q, Q	UAL: 1	7							\times	1 i i	
۱	1	2	3	4	5	6	7	8	9	10	
6	T	2	1	↓ ②	1	Ť	Ţ	2	Ť	1	
5	t 2	t 1	1 1	Ļ	t 1	Ť	Ļ) (1)	† 3	1	
4	† ②	t	↓ 30	, 1	1 3	† ②	4	↓ ②	† 3	1	
3	t	t 3	∔ 3	ł	t 2	† 1	↓ 3	↓ ③	t	† 2	

					Feb	orua	ry 21	016		
				s	м	т	w	т	F	S
Jan	28	2015	6	31	1	2	з	4	5	6
E.h		0016	7	7	8	9	10	11	12	13
⊦ер	29	2016	8	14	15	16	17	18	19	20
Mar	01 2017		9	21	22	23	24	25	26	27
			10	28	29	1	2	3	4	5
			11	б	7	8	9	10	11	13

Tap date required

200 Depart

Department for Environment Food & Rural Affairs

Field View

Input file

	Trial		** Plot														
	Planting		Column	** Plot													
Trial Name	Date	* Plot Id	(X)	Row (Y)	Rep	Entry_No	Genotype	Note	Stage_31	Booting	Date_flowering	Height_cm	Lodging	Senescence	Yield_kg	TGWT	Specific_weight
PxG_DT_2017	24/10/2016	10	1	10	3	114	RIL251										
PxG_DT_2017	24/10/2016	11	1	11	3	52	RIL120										
PxG_DT_2017	24/10/2016	12	1	12	3	16	RIL32										
PxG_DT_2017	24/10/2016	13	1	13	3	60	RIL147										
PxG_DT_2017	24/10/2016	14	1	14	3	35	RIL75										
PxG_DT_2017	24/10/2016	15	1	15	3	176	RIL355										
PxG_DT_2017	24/10/2016	16	1	16	3	82	RIL185										
PxG_DT_2017	24/10/2016	17	1	17	3	94	RIL216										
PxG_DT_2017	24/10/2016	18	2	1	1	94	RIL216										

Output file

TrialName	PlantingDate	PlotId	PlotColumn	PlotRow	Entry_No	Genotype	Rep	Booting	Date_flowering	Height_cm	Lodging	Senescence	Specific_weight	Stage_31	Date:Stage_31	TGWT	Yield_kg
PxG_DT_2017	24/10/2016	10	1	10	114	RIL251	3							03/04/2017	12/04/2017 10:00		
PxG_DT_2017	24/10/2016	11	1	11	52	RIL120	3							07/04/2017	12/04/2017 10:00		
PxG_DT_2017	24/10/2016	12	1	12	16	RIL32	3							07/04/2017	12/04/2017 09:59		
PxG DT 2017	24/10/2016	13	1	13	60	RIL147	3							03/04/2017	12/04/2017 09:58		
PxG DT 2017	24/10/2016	14	1	14	35	RIL75	3							03/04/2017	12/04/2017 09:57		
PxG DT 2017	24/10/2016	15	1	15	176	RIL355	3							07/04/2017	12/04/2017 09:56		
PxG DT 2017	24/10/2016	16	1	16	82	RIL185	3										
PxG_DT_2017	24/10/2016	17	1	17	94	RIL216	3							10/04/2017	12/04/2017 10:09		

Department for Environment Food & Rural Affairs

Import and export of files between PC and tablet through OneDrive

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

Wheat Genetic mprovement Network

之政

Department Environment

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- The BC3 NILs carry selected genetic foreground in the QTL • regions (height, heading, and yield)
- In addition each line carries ~12.5% random chromosomal background.
- Plan to tile the whole genome with chromosome segments to • make recombinant substitution lines for genome.

- Publication and availability of genomic sequence will allow more sophisticated presentation of these data in future
- Possible to present these in an *interactive* format
- Include as part of a searchable genome browser.
- Indication extent of substituted segment.
- Show position of Axiom and Bristol¹ markers

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- Genotyping carried out on 94 NILs (+ Av/Cad) using Breeders 35K array
- Estimate of % coverage of background (+ foreground) for each chromosome
- Have used several methods to generate map (i.e. based on frame-map, Axiom info and pseudomolecules...)
- NILs backcrossed to the recurrent parent to generate lines where QTL region and random

Segments have been separated Department for Environment Food & Bural Affairs

	Avalon	Cadenza
	43 lines	46 lines
1A	~80%	~60%
1B	~95%	~90%
1D	~30%	~70%
2A	~80%	~95%
2B	~60%	~90%
2D	~95%	~70%
3A	~95%	~95%
3B	~70%	~95%
3D	~80%	~60%
4A	~80%	~75%
4B	~80%	~85%
4D	~80%	~95%
5A	~90%	~75%
5B	~80%	~90%
5D	~95%	~80%
6A	~95%	~85%
6B	~95%	~95%
6D	~95%	~95%
7A	~60%	~70%
7A or 7D	~40%	~90%
7B	~60%	~90%
7 D	~95%	~30%
INCLU	DES FOREGR	

- 'Graphical genotypes' of an Avalon NIL for 1B ear emergence (left) and a Cadenza NIL for 2D height (right).
- For each chromosome a representative genotype is shown for each 20 Mb region across the length of the chromosome, based on the WGAv0.4 sequence assembly of Chinese Spring.
 Department for Environment
- Food & Rural Affairs

- 'Graphical genotypes' of Chr1A from all the 44 and 47 NILs from with Avalon or Cadenza backgrounds, respectively.
- A representative genotype is shown for each 20 Mb region across the length of the chromosome, based on the NRGene sequence.

- 'Graphical genotypes' of Chr1B
- The first five NILs in each background were selected for the 1B heading QTL
- Two NILs in the Avalon background appear to be incorrectly selected.

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- Will produce 'Graphical Genotypes' for all 21 chromosomes
- Will select lines to give the optimal tiling path for each chromosome
- The F2 progeny of crosses to the recurrent parent of the selected lines will be genotyped with BS markers to determine the presence of the required segment
- Seed of these lines will be bulked and made available to the community

Rothamsted Research where knowledge grows

Using the WGIN Diversity trial to develop drone applications

Andrew Riche

Disease detection from drone images

- Unsprayed area of wheat
- Collecting images at different altitudes
- At low altitude rotor wash affects the plants

2017 Diversity trial

2017	
Avalon	
Cadenza	
Claire	
Cocoon	
Conqueror	
Cordiale	
Crusoe	
Evolution	
Gallant	
Graham	Stigg
Hereford	
Hereward	
Hylux	
Hystar	
Istabraq	
KWS Lili	
Leeds	
Malacca	
Maris Wide	geon
Mercia	
Paragon	
RAGT IIIus	trious
Reflection	
Riband	
Robigus	
Siskin	Evoke
Skyfall	
Soissons	
Solstice	
Xi19	

Diversity trial yields and grain nitrogen

N use efficiency

NUpE = kg taken up per 100kg available (soil + fertilizer)

NUtE = kg of grain per kg N taken up

NUE = kg of grain per kg N available

i.e. @ 200kg N, 2 kg per decade, 10kg more grain per kg of N

Nitrogen requirements for maximum yield

3.5 t/ha yield increase over 50 yrs

50 kg N/ha increase in N rate for max yield over 50 yrs

2015-2016 Diversity trial anthesis sampling

2015-2016 Diversity trial mineral analysis

ROTHAMSTED

Key elements:

- Nitrogen
- Calcium
- Magnesium
- Sulfur
- Zinc
- Potassium
- Phosphorus
- Iron

Also:

 Al, As, Cd, Co, Cr, Cu, Mn, Mo, Na, Ni, Pb, Se, Ti

2015-2016 Diversity trial mineral analysis

2017 Diversity trial – Iron uptake and concentration

Malcolm Hawkesford Adam Michalski March Castle David Steele

Farm staff:

Stephen Goward Chris Mackay Nick Chichester-Miles

Rothamsted Research where knowledge grows

WGIN3 Management Meeting 20th April 2017

Screening germplasm for resilience to aphids (WP2.3)

Lesley Smart

Screening germplasm for resilience to aphids (WP2.3) Information to establish the likely genetic basis of resistance to cereal aphids

- ROTHAMSTED
- Crosses of *T. monococcum* lines made by Mike Hammond-Kosack: MDR037 (susceptible) x MDR045, MDR049 and MDR657 (all showing evidence of partial resistance)
- F1, F2 and F3 generations of these crosses have now been tested in the phenotyping screen against both aphid species. F3s of each cross tested included plants with the best and the worst effective partial resistance to the aphid species.
- Tested plants now being taken to F4.

Screening germplasm for resilience to aphids (WP2.3) Response to F2 generation of *T. monococcum* crosses

MDR037 (susceptible) x MDR045, MDR049 and MDR657 (all showing partial resistance)

Partial resistance (reduced weight gain) showing in F2 generation of MDR037 x MDR049, particularly for *S*. *avenae* the grain aphid.

Department for Environment Food & Rural Affairs Wheat Genetic Improvement Network Sitobion avenue on T. monococcum crosses F2s Number nymphs/weight range at 7 days (mg)

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generations of *T. monococcum* crosses

15 seeds (where available) of each selected F3 line sown and seedlings tested against target aphid species in phenotyping screen, compared to Solstice standard. Number of surviving nymphs recorded and then weighed in their batches to get an average nymph weight. Weights then allocated to weight ranges for comparison.

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of *T. monococcum* MDR037 x MDR049 crossing events

R. padi on *T. monococcum* crosses of MDR37 x 49 at F3 number of nymphs per weight range at 6 days (mg)

R. padi is selected from a narrower weight range or has more plasticity in response?

S. avenae is a better biological indicator in the phenotyping screen?

Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR049 crossing events

S. avenae on *T. monococcum* crosses of MDR37 x 49 at F3 number nymphs per weight range at 7 days (mg)

Plant no. x4 89, x5 79, x11 33, x17 36 & Solstice 60

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of *T. monococcum* MDR037 x MDR049 crossing events

R. padi on *T. monococcum* crosses of MDR37 x 49 on F3s from F2 plants with the best partial resistance; number nymphs per weight range at 6 days (mg)

S. avenae on T. monococcum crosses of MDR37 x 49 on F3s from F2 plants with the best partial resistance; number nymphs per weight range at 7 days (mg)

R. padi on *T. monococcum* crosses of MDR37 x 49 on F3s from F2 plants with the worst partial resistance; number nymphs per weight range at 6 days (mg)

S. avenae on T. monococcum crosses of MDR37 x 49 on F3s from F2 plants with the worst partial resistance; number nymphs per weight range at 7 days (mg)

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of *T. monococcum* MDR037 x MDR045 crossing events

Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR045 crossing events

S. avenae on *T. monococcum* crosses of MDR37 x 45 at F3 number nymphs per weight range at 7 days (mg)

plant no. x14 57, x19 51, x20 50, Solstice 39

Response to different crossing events is similar

Screening germplasm for resilience to aphids (WP2.3) Response to F3 generation of *T. monococcum* MDR037 x MDR657 crossing events

R. padi on T. monococcum crosses of MDR37 x 657 at F3

Weight gain by both aphid species on F3 plants selected from the different MDR037 x MDR657 crossing events

S. avenae on *T. monococcum* crosses of MDR37 x 657 at F3 number nymphs per weight range at 7 days (mg)

plant no. x1 15, x2 45, x10 40, x12 53, Solstice 40

Response to different crossing

events is similar except for x12(2)

Summary WGIN3 (WP2.3)

- F3 generations of *T. monococcum* MDR037 x MDR049, MDR045 and MDR657 crosses, with a range of aphid response at F2 and sufficient seed, have been tested in the phenotyping screen against both aphid species.
- All surviving plants have been vernalised and are being taken to F4
- Plants will be selected from the most viable crossing events for each of the crosses for each aphid, tested and taken to F5.
- DNA samples from F2s still to be tested

Rothamsted Research where knowledge grows

WGIN 3 Resistance to take-all and foliar diseases

Vanessa McMillan

Department for Environment Food & Rural Affairs

BBSRC bioscience for the future ROTHAMSTED RESEARCH

WGIN MM 20th April 2017

Watkins 2008 Field Trial

Also a high take-all disease year with root infection early in the season

Was the foliar disease resistance an induced plant response?

			2008 Disease assessments			
Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
18	Spring	India	0	0	Т	Т
137	Spring	Australia	Т	Т	0	Т
203	Winter	India	0	0	0	Т
231	Spring	Hungary	0	0	Т	0
262	Spring	Canary Islands	0	0	0	0
399	Spring	China	Т	0	Т	0
495	Spring	Morocco	0	0	Т	0
610	Spring	Yugoslavia	0	0	Т	Т
733	Spring	Iran	Т	Т	Т	Т
786	Spring	USSR	0	Т	Т	0
tment						

Depar

for Environment Food & Rural Affairs 0 – no disease , T = trace

- 10 Watkins lines + controls sown in both 1st wheat (no take-all) and 3rd wheat (high take-all) field trials in autumn 2014, 2015 and 2016
- No fungicides applied to allow natural disease to develop
- Score for foliar diseases + take-all

Watkins foliar disease field trial 2015

26th June 20151st wheatLong Hoos 4Yellow rust dominant disease that developed across 2015 field trials

Wheat Genetic Improvement Network Department for Environment Food & Rural Affairs

Evidence of resistance to yellow rust

- Did Watkins lines escape disease in 2008 or change in YR races?
- Evidence of induced response due to take-all?

Wheat Genetic

mprovement

Network

ROTHAMSTED RESEARCH

Evidence of resistance to yellow rust

Watkins 203 Low levels of yellow rust sporulation

Department for Environment Food & Rural Affairs

Watkins 733 No sporulation

- Repeat field trial with 5 replicates of each genotype sown in autumn 2015 in Long Hoos 5 (1st wheat) and Long Hoos 6/7 (3rd wheat)
- Yellow rust, septoria and brown rust developed

6th June 2016 – Yellow rust and Septoria

Yellow Rust shows similar pattern to 2015

Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections

All genotypes at GS 57-61, except 610 at GS 47

Wheat

Genetic

Network

22nd June 2016 – Brown rust developed across the 1st wheat trial site

RESEARCH

Watkins 231

• Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust – do not possess multi disease resistance

Watkins foliar disease trial 2017

- Repeat field trial with 3-5 replicates of each genotype sown in autumn 2016 in Long Hoos 4 (1st wheat) and Claycroft (3rd wheat)
- Disease assessments carried out 18th April 2017

18th April 2017 – Septoria and Yellow Rust

- Disease assessments on lower leaves
- All genotypes at tillering or beginning of stem elongation
- Higher disease pressure on 3rd wheat site
- Watkins 203 and 610 most promising for showing high levels of resistance against multiple foliar diseases yellow rust, brown rust and septoria

200

Watkins mapping population development

RESEARCH

Summer 2015 Field crossing with cv. Fielder								
Accession Number	Growth habit	Country of Origin	Ears crossed	F_1 grains				
203	Winter	India	8	31				
231	Spring	Hungary	8	54				
610	Spring	Yugoslavia	6	33				
733	Spring	Iran	6	49				
786	Spring	USSR	N/A	N/A				

Summer 2016

Department for Environment Food & Rural Affairs

- F₁ grain sown in glasshouse to generate F2 and for backcrossing to cv.
 Fielder
- Watkins 786 x Fielder crossing carried out in glasshouse at later date
- F₁ grain included in a spring field trial 2016 to study inheritance

Watkins 786 originally excluded from crossing because had high levels of yellow rust during tillering – possibly APR?

F₁ plants – spring field trial

- Six F_1 grain from each of the 4 crosses sown •
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 ٠

Wheat

Genetic

Network

F₁ plants – spring field trial

- Six F_1 grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 •

Wheat

Genetic

Network

F₁ plants – spring field trial

- Six F_1 grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 •

Wheat

2017 F₂ field trial

ROTHAMSTED

F₂ field trial

- Two F₂ populations from each of the four crosses sown (FxW203, FxW231, FxW610 and FxW733) + parents
- 10 F₁ plants sown from FxW786 cross
- Plot size = 4 rows x 1 m length, 80 seeds sown for each population
- Drilled 14th October 2016 in Sawyers 2
- April 2017 little foliar disease developing across trial site

Can root resistance to take-all be improved by using an ancient wheat?

- 3rd wheat field trials 2006-2011 (WGIN 1 and 2)
- 34 T. monococcum genotypes (AA diploid genome) tested over 5 years
- Originally chosen to cover range of countries of origin, subspecies, growth habit

Wheat

Genetic

Network

mprovement

Department

for Environment

Food & Rural Affairs

Take-all phenotyping strategy

Network

Food & Rural Affairs

ROTHAMSTED RESEARCH

★ MDR031 and MDR046

Phenotyping strategy worked well – we have covered a range of genetically dissimilar genotypes from within larger collection

NY

×

F6 mapping populations:

MDR037 (S) x MDR046 (R) – 79 lines (take-all resistance, 3 field seasons 2014-2016)

MDR031 (R) x MDR043 (S) (take-all resistance – currently being phenotyped, drilled in 3rd wheat field trial autumn 2016)

MDR037 x MDR229 – 85 lines (root penetration, laboratory screen)

3rd wheat field trials 2014, 2015 and 2016

- Randomised block design (2-5 replicates/genotype)
- Plant samples taken at GS 75 for take-all assessments

Agri intelligence

Weak but significant correlation between the two field trials

Take-all QTLs identified on different linkage groups between the two years

2015-2016 2016/R/WW/1612 3rd wheat Long Hoos 6/7 Very high disease pressure Grand mean = 87 P <.001

No take-all QTLs identified

MDR037 (take-all susceptible) x MDR046 (take-all resistant)

- Preliminary analyses reveal different QTLs between first two field seasons perhaps exacerbated by flooding of 2013-2014 field trial
- Under very high disease pressure no QTLs detected in 2016
- SSR genotyping to be carried out to improve linkage maps

MDR031 (take-all resistant) x MDR043 (take-all susceptible)

• F₆ take-all phenotyping trial drilled autumn 2016, population still to be genotyped

Many thanks to

Kim Hammond-Kosack

<u>PhD students</u> Sarah-Jane Osborne Joseph Moughan

Undergraduate summer students Erin Baggs Eleanor Leane Tessa Reid Laurie Neal Alex Chambers-Ostler Leanne Freeman

Gail Canning - seed preparation Mike-Hammond-Kosack - crossing

Rodger White - statistics

RRes farm and glasshouse staff

Department for Environment Food & Rural Affairs

T. monococcum source genotypes

MDR 308 (DV92) - TmStb1 locus mediated resistance to Zymoseptoria tritici

MDR 031 - Seedling and adult plant root resistance to the take-all fungus (Gae

MDR 049 - Seedling and adult plant resistance to two aphid species o Bird cherry-oat aphid *R* o Grain aphid *Sitobion av*

Current strategy (so far not very successful)

cross *T. monococcum* (*Tm*) to *T. aestivum* cv. Paragon ph-1 embryo rescue in F_1 backcross the hybrid to *T. aestivum* cv. Paragon

Trying two alternative strategies

Strategy #1

colchicin treat *Tm* to produce autotetraploid cross *Tm* autotetraploid directly to wild-type hexaploid and durum wheat

Strategy #2

use tetraploid durum wheat as a bridging species cross *Tm* with durum wheat backcross this hybrid to hexaploid wheat

